

/ Schools Science Vision

ichools' vision of science education is to ensure that from early childhood to the end of the 12th grade, all students have heightened curiosity and an c; possess sufficient knowledge of science and engineering to engage in discussions; are able to learn and apply scientific and technological inform ind have the skills such as critical thinking, problem solving, and communication to enter careers of their choice, while having access to connections technology.

Shelby County Schools has employed The Tennessee Academic Standards for Science to craft meaningful curricula that is innovative and provide ϵ nities that extend beyond mastery of basic scientific principles.

Iby County Schools Board of Education adopted a set of ambitious, yet attainable goals for school and student performance. The District is committed described in our strategic plan, Destination 2025. In order to achieve these ambitious goals, we must collectively work to provide our students with d instruction. The Tennessee Academic Standards for Science provide a common set of expectations for what students will know and be able to do be located in the <u>Tennessee Science Standards Reference</u>. Tennessee Academic Standards for Science are rooted in the knowledge and skills tha st-secondary study or careers. While the academic standards establish desired learning outcomes, the curriculum provides instructional planning de nese outcomes. The curriculum maps contain components to ensure that instruction focuses students toward college and career readiness. Educate andards as a roadmap for curriculum and instruction. The sequence of learning is strategically positioned so that necessary foundational skills are s ant mastery of the standards.

al is to ensure our students graduate ready for college and career. Being College and Career Ready entails, many aspects of teaching and learning *i* their scientific learning in the classroom and beyond. These valuable experiences include students being facilitators of their own learning through p cally. The Science and Engineering Practices are valuable tools used by students to engage in understanding how scientific knowledge develops. The t "processes and proficiencies" with longstanding importance in science education. The science maps contain components to ensure that instructior understanding how science and engineering can contribute to meeting many of the major challenges that confront society today. The maps are cen nents: the Tennessee Academic Standards for Science, Science and Engineering Practices, Disciplinary Core Ideas, Crosscutting Concepts, and F

Academic Standards for Science were developed using the National Research Council's 2012 publication, <u>A Framework for K-12 Science Education</u> framework presents a new model for science instruction that is a stark contrast to what has come to be the norm in science classrooms. Thinking al morizing concepts and solving mathematical formulae. Practicing science had become prescribed lab situations with predetermined outcomes. The *i*-dimensional approach to science education that capitalizes on a child's natural curiosity. The Science Framework for K-12 Science Education proveloping the effective science practices. The *Framework* expresses a vision in science education that requires students to operate at the nexus of thruce and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. The *Framework* identified a small number of disciplinary core ic learn with increasing depth and sophistication, from Kindergarten through grade twelve. Key to the vision expressed in the *Framework* is for students ideas in the context of science and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts ited in the *Framework* as follows:

erformance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ic practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in text of specific content. (NRC Framework, 2012, p. 218)

kills and dispositions to use scientific and engineering practices needed to further their learning and to solve problems, students need to experience nultiple practices in developing a particular core idea and apply each practice in the context of multiple core ideas. We use the term "practices" insteppendix that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Students in grades K-ht practices over each grade band. Crosscutting concepts have application across all domains of science. As such, they are a way of linking the differing areas of disciplinary because they provide students with connections and intellectual tools that are related across the differing areas of disciplineir application of practices and their understanding of core ideas. There are seven crosscutting concepts that bridge disciplinary boundaries, unitimelds of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas and develop a coherent ed view of the world.

nt to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional pramerely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. I ble about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are b is about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders-to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related ver, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning a must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support arning across the content areas.

Science and Engineering	Disciplinary Core Ideas	Crosscutting Concepts
Practices 1. Asking questions & defining problems	Physical Science PS 1: Matter & its interactions PS 2: Motion & stability: Forces & interactions	1. Patterns
2. Developing & using models	PS 3: Energy PS 4: Waves & their applications in technologies for information transfer	2. Cause & effect
3. Planning & carrying out investigations	Life Sciences LS 1: From molecules to organisms: structures & processes	3. Scale, proportion, & quantit
4. Analyzing & interpreting data	LS 2: Ecosystems: Interactions, energy, & dynamics LS 3: Heredity: Inheritance & variation of traits	4. Systems & system models
5. Using mathematics & computational thinking	LS 4: Biological evaluation: Unity & diversity	5. Energy & matter
6. Constructing explanations & designing solutions	Earth & Space Sciences ESS 1: Earth's place in the universe ESS 2: Earth's systems ESS 3: Earth & human activity	6. Structure & function
7. Engaging in argument from evidence	Engineering, Technology, & the Application of Science ETS 1: Engineering design	7. Stability & change
8. Obtaining, evaluating, & communicating information	ETS 2: Links among engineering, technology, science, & society	

ression

elementary science experience, students can observe and measure phenomena using appropriate tools. They are able to organize objects and ide single properties and later by multiple properties. They can create and interpret graphs and models that explain phenomena. Students can keep nor a lobservations and identify simple patterns. They are able to design and conduct investigations, analyze results, and communicate the results to oth riosity, interest and enjoyment of the scientific world view, scientific inquiry, and the scientific enterprise into middle school.

middle school science experience, students can discover relationships by making observations and by the systematic gathering of data. They can i lid arguments. Their focus has shifted from the general to the specific and from the simple to the complex. They use scientific information to make vation of the natural world. They recognize that there are both negative and positive implications to new technologies.

uate, former students should be literate in science, understand key science ideas, aware that science and technology are interdependent human ent nitations, familiar with the natural world and recognizes both its diversity and unity, and able to apply scientific knowledge and ways of thinking for inc

e Standards

Level/Course Overview: An overview that describes that specific content and themes for each grade level or high school course.

linary Core Idea: Scientific and foundational ideas that permeate all grades and connect common themes that bridge scientific disciplines.

ard: Statements of what students can do to demonstrate knowledge of the conceptual understanding. Each performance indicator includes a specific leering practice paired with the content knowledge and skills that students should demonstrate to meet the grade level or high school course standar

ience Curriculum Maps

ide to help teachers and their support providers (e.g., coaches, leaders) on their path to effective, college and career ready (CCR) aligned instruction ation 2025. It is a resource for organizing instruction around the Tennessee Academic Standards for Science, which define what to teach and what grade level. The map is designed to reinforce the grade/course-specific standards and content (scope) and provides *suggested* sequencing, pacing, urces. Our hope is that by curating and organizing a variety of standards-aligned resources, teachers will be able to spend less time wondering wha ality materials (though they may both select from and/or supplement those included here) and have more time to plan, teach, assess, and reflect with rove practice and best meet the needs of their students.

nt to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional pramerely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. To be about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are bis about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, lead s--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related ver, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning a must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support arning across the content areas.

SCS Chemistry Curriculum Map

t 1 tructure	Unit 2 Interactions of Matter Part I	Unit 3 Interactions of Matter Part II	Unit 4 Interactions of Matter Part III	Unit 5 Matter and Energy	ا Acid & B Nuclear
eks	4 weeks	9 weeks	3 weeks	6 weeks	9 weeks
Unit 1 Atomic Structure					

ing Question(s)

ncept of the atom change over time?

ard, Explanations, conceptions gth [5 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs) <i>*Suggestions</i>	Vocabulary and Cui Materials
Matter and Its	Essential Questions What role does chemistry play in the world around us?	Science and Engineering Practice Engaging in argument from evidence Students critically evaluate evidence supporting an argument and	Vocabulary Chemistry, substance, ma model, scientific method, (data, quantitative data, hy
1 Develop and ical models of the atom us to quantum model) arguments to show how	How does qualitative data differ from quantitative data? What models of the atom have led to the development of our current understanding of atomic structure?	create written or oral arguments which invoke empirical evidence, scientific reasoning and scientific explanations.	experiment, independent v dependent variable, contro conclusion, theory, scienti research, applied researcl atomic theory, atom, catho electron, nucleus, proton,
edge evolves over experimental ue, and alternative should be taught in	understanding of atomic structure? How do various atomic models compare with current scientific evidence?	Cross Cutting Concepts Systems and System Models Students create and manipulate a variety of different models: physical, mathematical, and computational. Textbook	Textbook Modern Chemistry Chap. Interactive Video Modern Chemistry We
h and to support other in this unit.	How do models in science change over time?	Modern Chemistry Chap. 3 & 4	Resources: http://www.visionlearning.cor ule_viewer.php?mid=49&I Laboratory

tn.gov/content/dam 1/standards/sci/sci_ eference.pdf

ve developed an of physical science ng to chemistry, they ited a number of these er, the names have not plicit. One approach aken to this standard e the ideas when other standards. For ison's model is ind classifications and when differentiating and molecular

<u>ns</u> nd solid sphere maller particles.

Idards reference Learning Outcomes

Familiarity with use and importance of the scientific method, including hypothesis, independent/dependent variables

Differentiation between a theory and a scientific law

Compare and contrast the major models of the atom (i.e. Bohr, and the quantum mechanical model).

Identify the contributions of major atomic theorists: Bohr, Chadwick, Dalton, Planck, Rutherford, and Thomson.

Compare the Bohr model and the quantum mechanical electron-cloud models of the atom.

Phenomenon

Use of the scientific method in research and development for all scientific research such as drug development. Introduce students to the steps of scientific research used from the beginning to the end of drug development.

Have students consider a familiar example of a weighted average. For example, a students' grade where each category is counted a different percentage. Discuss the process of Activities/Investigations Modern Chemistry p. 73 C Phet labs to accompa simulations

https://colorado.edu/en/sir tegory/new

Simulations

Modern Chemistry Web R History of Atom and Hydrc Helium:

http://www.visionlearning.cor ule_viewer.php?mid=50

lons, atoms, molecule simulation:

http://www.visionlearning.cor ule_viewer.php?mid=51

https://phet.colorado.emulation/rutherford-sc

Articles

https://www.ck12.org/c/(istory-of-chemistry/less(in-Chemistry-History-CHEM/?referrer=concep Modern Chemistry p. Nanotechnologist Performance Tasks Modern Chemistry W(Resources: Tutorial http://www.teachersdomain.c 07_int_theatom/ Model Building Intera(http://phet.colorado.edu/en/s d-an-atom Build an atomic theory tim

textbook resources and or

calculating their grade. Take this resources. Students will u same concept and apply it to the of copy paper and marker calculation of average atomic mass pencils to develop a timeli as seen on the periodic table. Democritus to the Quantu theory. Students should be given elements and their atomic atomic number. Students calculate the number of pr neutrons, and electrons. S should also identify and ca atomic number and atomic when given the number of neutrons, and electrons.

ing Question(s)

erior structure of the atom and how was it experimentally determined?

ard, Explanations, conceptions gth [10 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cu Materials
	Essential Questions	Science and Engineering Practice	Vocabulary
Naves and Their Technologies for	How are calculations impacted by the accuracy of measuring devices and	Developing and using models	Base unit, second, meter, atomic emission spectrum
Insfer	the precision of the measurements?	Students can test the predictive	photoelectric effect, photo
		abilities of their models in a real-world	constant, quantum, wavel
	How do scientist's express quantities	setting and make comparisons of two	<u>Textbook</u>
Using a model, explain	and convert them into different units?	models of the same process or	Modern Chemistry Chap.
emit characteristic		system.	<u>Laboratory</u>
light and how this	Learning Outcomes		Activities/Investigations
ised	Use SI system during measurement	Cross Cutting Concepts	Flame test lab or dem
	and problem solving.		Modern Chemistry Teache
		Cause and Effect	Resources
ing of the behavior of	Use a variety of appropriate notations		PhET labs based on simu
en developed first by	(e.g., exponential, functional, square	Students use cause and effect	found at
operties of waves in		models at one scale to make	https://colorado.edu/en/sir

id more recently in hen students etween mechanical anetic waves. This is at students investigate or the emission of asis should be placed n of characteristic mitted when electrons ic movements and of each element that s should explore the these ideas on arification may be rentiate this particulate it from previous its wave properties; ssions of Quantum entiating wave-particle ond the scope of this

าร

/ emit light if they
 the emission of light
 do with gaining energy
 source.

root).

Accuracy, precision, and error in a series of measurements.

Read/interpret graphs: (pie, bar, and line)

Interpret a Bohr model of an electron moving between its ground and excited states in terms of the absorption or emission of energy.

Phenomenon

Why does glow in the dark paint glow? Why do fireworks explode in various colors?

Help students understand the process of paint particles gaining energy from light and glowing as the excited electrons move from the excited state to the ground state.

Use a flame test lab to help students see the colors emitted from different metallic ions as they gain energy from the flame and remit it as the electrons move from the ground state to the excited state and them back to the ground state. Link this lab activity to the different colors we see as fireworks explode. predictions about the behavior of systems at different scales.

Textbook Modern Chemistry Chap. 4 Simulations Modern Chemistry Teache Resources https://phet.colorado.edu/e n/wave-on-a-string https://phet.colorado.edu/e n/legacy/photoelectric https://phet.colorado.edu/e n/legacy/discharge-lamps https://phet.colorado.edu/e n/molecules-and-light https://phet.colorado.edu/e n//legacy/hydrogen-atom Modern Chemistry Teache Resources: Energy Level Atom (Animation) Videos Modern Chemistry Web http://winter.group.shef.ac.uk (shapes of orbitals) Articles Modern Chemistry p.114 Decade https://www.ck12.org/c/c hotoelectriceffect/lesson/Photoelect CHEM/?referrer=concep **Performance Tasks:** Have two students hold a spring or slinky along the t tabletop. Ask one of the s begin moving the spring b forth so that a wave patter forms. Students should de the wavelength changes a frequency of the movemer increased and then

tegory/new

	wave model and identify the crest, wavelength, amplitu frequency. This can then the wavelength of light and electrons in the atomic mc
	Students will observe gas flame test colors of metals compounds using diffractie or a simulation. Students why different metal compc different colors. Students a relate and discuss the rela the excitement of electron of energy as the atoms rel the ground state which rel energy that relates to a sp wavelength of light in the v spectrum.
	Paint a piece of poster boi glow in the dark paint. Tu lights in the classroom if it made dark by doing so. E: board to a camera flash w student holds their hand ir board. The students shou the paint glows where the board but does not where was held during the flash. lead the students to a disc electrons moving from the state to the excited state a back to the ground state. students to use the terms state, excited state, and e levels. Use this to lead int

decreased. Students show

photoelectric effect.

Students will write orbital I various elements from the table. Students will apply to the organization of the I table.

l ucture	Unit 2 Interactions of Matter Part I	Unit 3 Interactions of Matter Part II	Unit 4 Interactions of Matter Part III	Unit 5 Matter and Energy	Acid & Nuclea
KS	4 weeks	9 weeks	3 weeks	6 weeks	9 weeł
Questions:					

ms of one element different from atoms of another element?

periodic table developed and how does it relate to the physical and chemical properties of elements?

ard, Explanations, conceptions gth [7 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cu Materials
Matter and Its	Essential Questions How is the position and energy of a specific electron assigned for an atom?	Science and Engineering Practice Constructing explanations and designing solutions	Vocabulary Periodic law, periodic table lanthanide, actinide, alkali alkaline earth metals, peri
2 Explain the origin on of the Periodic chemical and physical ain group elements iber of subatomic	How is the charge on anions and cations determined by electron configurations? How does the structure of matter	Students form explanations that incorporate sources (including models, peer reviewed publications, their own investigations), invoke scientific theories, and can evaluate the degree to which data and	Mendeleev, Moseley, tran elements, main-group eler halogens, atomic radius, id ionization, ionization energ affinity, cation, anion, vale electron, electronegativity
harge, ionization radius, and y) based on location of ble. Construct an	determine its chemical and physical properties? How does the structure of the periodic	evidence support a given conclusion. Cross Cutting Concepts	Textbook Modern Chemistry Chap. Laboratory Activities/Investigations

scribe how the	table allow us to predict the chemical	Patterns	Modern Chemistry Quick
anical model of the	and physical properties of an		Designing Your Own Peri
erns of valence and	element?	Students recognize, classify, and	Labs accompanying PhE
defines periodic	lless is the mericalis table of any alots	record patterns in quantitative data	simulations
the periodic wis dot structures and	How is the periodic table a template	from empirical research and	https://phet.colorado.edu/
	of organization for the material world?	mathematical representations.	ns/category/chemistry
nding of orbital		Taratha a la	Simulations Modern Chemistry Chap.
h drawing and phical representations	Learning Outcomes	Textbook	Resources: Animated Ch
resenting electrons in	Interpret the periodic table to describe	Modern Chemistry Chap. 5	Periodic Trends
esenting electrons in	an element's atomic makeup.		https://phet.colorado.edu/
			n/build-an-atom
ddressed in this	Apply the periodic table to determine		https://phet.colorado.edu/
r as patterns leading	the number of protons and electrons		n/isotopes-and-atomic-ma
nent of the periodic	in a neutral atom.		http://phet.colorado.edu/en/s
terns in the behavior of			rogen-atom
be explained by	Distinguish between the subatomic		Video
he periodic table.	particles in terms of relative charge		Modern Chemistry: Why
d engage in activities	and mass.		Video: Periodic Law
portunities to uncover	Dependent the structure of the store		Articles
For example, an	Describe the structure of the atom,		https://www.ck12.org/c/
cussion of orbital	including the locations of the		arly-history-of-the-perio
I relate back to the	subatomic particles.		table/rwa/Finding-Patter
the periodic table,	Calculate the number of electrons,		Elemental-
ely following a chart	protons, and neutrons in an atom,		Behavior/?referrer=con
aufbau principle.	given its mass number and atomic		Modern Chemistry Chap.
ctivity can be	number.		Material Scientists
ugh investigation.	number.		Modern Chemistry Chap.
	Draw Bohr models of the first 18		Pieces Everything is Mad
IS	elements.		for Putting Small Pieces i
ern to the organization	elements.		Performance Tasks
eriodic table.	Identify the <i>s</i> , <i>p</i> , <i>d</i> , and <i>f</i> blocks based		Modern Chemistry Web F
	on their electron configuration and		http://phet.colorado.edu/en/s
	location on the periodic table.		opes-and-atomic-mass Electron Configuration Ba
			Divide into pairs, each stu
	Represent an electron's location in		laminated Periodic Table
	the quantum mechanical model of an		sheet protector) and dry e
	atom in terms of the shape of electron		marker. They mark out th
			Shelb

clouds (s and p orbitals in particular), relative energies of orbitals, and the number of electrons possible in the s, p, d, and f orbitals. (Heisenberg Uncertainty Principle)

Use the periodic table to identify an element as a metal, nonmetal, or metalloid

Apply the periodic table to determine the number of protons and electrons in a neutral atom

Define and calculate an isotope.

Determine the number of protons and neutrons for a particular isotope of an atom

Determine the Lewis electron dot structure or number of valence electron from an atom of any maingroup element from its atomic number or position in the periodic table.

Phenomenon

Relate the trends of the periodic table to trends in fashion and trends among teenagers.

Students understand trends in fashion as things that everyone is doing. Relate the ideas of trends in society to the repetition of characteristics within groups and periods in the periodic table. on the table (3, 4, or 5 ele row) with a dry erase marl looking at their partner's b students guess the locatio ships by using the electron configuration for the correelement location.

g Question(s) ms interact with other atoms?

st atoms form chem	st atoms form chemical bonds?				
ard, Explanations, conceptions gth [5 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cu Materials		
Matter and Its	Essential Questions How does a study of valence electrons help to explain most chemical phenomena?	Science and Engineering Practice Constructing explanations and designing solutions Students form	Vocabulary chemical bond, cation, ani bond, ionic compound, co covalent compound, crysta		
3 Use the periodic ronegativity differences predict the types of formed between atoms il reactions and write hemical compounds, tomic ions using	How does chemical naming exhibit organizational patterns? <u>Learning Outcomes</u> Analyze ionic and covalent compounds in terms of their formation, names, chemical formulas, percent composition, and molar masses.	explanations that incorporate sources (including models, peer reviewed publications, their own investigations), invoke scientific theories, and can evaluate the degree to which data and evidence support a given conclusion Cross Cutting Concepts	electrolyte, lattice energy, unit, monatomic ion, oxida number, polyatomic ion, s formula, resonance, coord covalent bond <u>Textbook</u> Modern Chemistry Chap. <u>Laboratory</u>		
I that the determination classifications based on iy can differ from one he next. While specific ange from one he next, attention to the underlying idea epresent some form of c (electrostatic e differences between h then be related back e electrostatic ther or not atoms are hey interact. 1s inegativity difference	Determine the types of chemical bond that occurs in a chemical compound. <u>Phenomenon</u> Relate the melting point and boiling point of different ionic and covalent compounds to the bond type. This could be done using an inquiry lab where student test the melting point and boiling point and electrical conductivity of various compounds and classify the compound as ionic or covalent based on both the chemical formula, electronegativity, conductivity and the melting and boiling point.	Cause and Effect Students use cause and effect models at one scale to make predictions about the behavior of systems at different scales. <u>Textbook</u> Modern Chemistry Chap. 6 & 7	Activities/Investigations Modern Chemistry Lab: C- as an Indicator of Bond Ty Determining the percentag in copper sulfate pentahyc Modern Chemistry Teache Resource: Determining th Formula of MgO. Inquiry labs accompanying simulations https://phet.colorado.edu/e ns/category/chemistry Simulations Modern Chemistry Teache Resources: Why It Matter Chemical Bonding Modern Chemistry Teache		

vays be used to ine the type of For example, the negativity difference in boron and fluorine is et scientist know n experimentation that :rifluoride is a ntly bonded compound.

Relate chemical bonds to people in a crowded elevator. As people squeeze into the confined space, they come in contact with each other. Many people will experience a sense of being too close together and wanting to push others away from them. Likewise, when atoms get close enough, their outer electrons repel each other. But in contrast to the people in the elevator the electrons of one atom are attracted to the nucleus of the other atom. The degree of attracting determines the type of chemical bond. Resources: Animated Che Types of Bonds Modern Chemistry Teache Resources: Why It Matters and Compounds Modern Chemistry Teache Resources: Formula Mass Mass (Animation) Video http://www.visionlearning.cor ule viewer.php?mid=55# https://phet.colorado.edu/e n/build-a-molecule https://phet.colorado.edu/e n/legacy/conductivity Articles Modern Chemistry p. 170 Energy https://www.ck12.org/c/c hemical-bond/rwa/Bond Bond/?referrer=concept Modern Chemistry Teache Resources Performance Tasks •

Students will take of ionic compound samples of covale compounds and u lid and candle will samples for their r point. All samples place on the can l same time. Stude use a ring stand a support the can lic *Shelby*

ard, Explanations,	Essential Questions, Learning	3-Dimensional Instructional	Vocabulary and Cu
ard, Explanations,		3-Dimensional Instructional	 either ionic or cov Students will be g several compound will then classify th compounds as ior covalent. Student use the appropria naming the compo Students carry ou Determining the E Formula of MgO a the process and s determining the en formula from lab c
			will then light a ca place under the ca lid. Students will t the compounds by melting. Students their knowledge o properties of ionic covalent compour classify the compo

ard, Explanations, conceptions gth [5 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cui Materials
	Essential Questions	Science and Engineering Practice	Vocabulary
Aatter and Its	How do the charges of electrons	Obtaining, evaluating, and	linear, bent, trigonal plana
	affect bond geometry?	communicating information	pyramidal, tetrahedral, pol VSEPR, valence electrons
	Learning Outcomes	Students can provide written and oral	<u>Textbook</u>
4 Use Lewis dot	Analyze compounds according to	explanations for phenomena and	Modern Chemistry Chap.
lectronegativity	elements and their valence electrons.	multi- part systems using models,	Laboratory
predict the polarities of		graphs, data tables, and diagrams.	Modern Chemistry Lab: F
es (linear, bent,	Determine number of bonding and		Convulsion: determining t
trigonal pyramidal,	non-bonding electrons and how they	Cross Cutting Concepts	unshared electrons on mo

onstruct an argument affect the molecular shape. (VSEPR) Structure and Function shape Virtual Lab electronegativity http://phet.colorado.edu/en/s irity of chemical Students infer the function of a Determine how the molecular shape d-a-molecule of a compound affects its polarity. component of a system based on its Activities/Investigations shape and interactions with other Modern Chemistry Teache components. Phenomenon Resources: Science Explc is standard is on How can molecular geometry affect Labs accompanying PhET polarity of molecules Textbook how substances interact; example simulations that influence that Modern Chemistry Chap. 6 Sec 5 why oil does not mix with water or Video are two separate why ionic compounds do mix with Modern Chemistry We erstanding associated water? pt. The first strand Resource: Lewis Dot Have students observe the mixing of use of electronegativity oil and water and then of alcohol and http://library.thinkguest.org/1 olarity. This level of ding/bonding.htm water. Show students the molecular can be applied at a Simulations structure of alcohol, water and oil. binary compounds, but Modern Chemistry Teache Help the student analyze the structure Resources: Molecular Geo ifficient to explain the for similarities and differences. Lead complex compounds. Video the students to see how water is more and of this standard http://library.thinkquest.org/10 like alcohol than oil and then to an metry/geobody.htm es the shape of understanding of why oil and water do kplain polarities. not mix and why alcohol and water be able to consider a Articles will mix. ucture and determine https://www.ck12.org/c/c How does soap remove stains from e molecule as well as ewis-electron-dot-struct your clothing? Students try to clean ing the distribution of Simpledifferent stains from a fabric with or y into account when Code/?referrer=concept without soap and using different ape. (Only molecules solvents. This simulation works well ctet rule will be for both middle school and high Performance Tasks th molecules such as school students depending on how it Students will be given bina niaht be used durina is used. For younger students, focus compound names and will ustrate the effect of the on the concept of 'like dissolves like' classify the bonds based (of electrons on the and mixtures. For older students the differences in electronega olecule, as compared focus can shift to polarity, colloids, either polar or nonpolar. de which lacks this and micelles. This simulation can also Modern Chemistry Teache The additional be used when discussing cell Resources one pair to disrupt membranes in biology. not actual bond angles

1.)

าร

hink that atoms within arranged in a flat reality they have a 3-D			
ard, Explanations, conceptions gth [5 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cu Materials
Motion and Stability: eractions Draw, identify, and cal representations of s (ionic, covalent, and l on chemical formulas. communicate show that atoms nsferring or sharing	Learning Outcomes Differentiate between ionic and covalent bond models. Phenomenon Have students compare the brittleness of ionic crystals to that of covalent crystals and metallic substance by hitting them with a hammer. Students can then look at the structure of each and analyze the attraction between particles to use guided inquiry to analyze why the	Constructing explanations and designing solutions Students form explanations that incorporate sources (including models, peer reviewed publications, their own investigations), invoke scientific theories, and can evaluate the degree to which data and evidence support a given conclusion. <u>Cross Cutting Concepts</u> Structure and Function	Vocabulary Ionic, covalent, electron tra- electron sharing, metallic I delocalized electrons (sea electrons) <u>Textbook</u> Modern Chemistry Chap. <u>Video</u> Modern Chemistry: Why I Chemical Bonds <u>Laboratory</u> <u>Activities/Investigations</u> Modern Chemistry Teache Resources: 1) Chemical E
resumes discussions of tween atoms from nth grade, students rns within the periodic ed the physical and erties of substances to the constituent e periodic table. eral trends is likely to nowever a focus should ne transfer of electrons erences in properties. It show that electrostatic cur even between two	ionic compounds are brittle and fall apart when hit with a hammer and why metals simply are hammered into a thin sheet. Students could also test the melting point of various ionic and covalent compounds noting that ionic compounds melt at high temperatures than do covalent compounds.	Students apply patterns in structure and function to unfamiliar phenomena. <u>Textbook</u> Modern Chemistry Chap. 6	(Virtual Lab) 2) Chemical Bonds: Test v substances in the lab and the bond type base on cha <u>Simulations</u> Modern Chemistry Teache Resources <u>https://phet.colorado.edu/e</u> <u>n/build-a-molecule</u> <u>https://phet.colorado.edu/e</u> <u>n/legacy/sugar-and-salt-se</u> Modern Chemistry Web R Ionic Bond Interactive: <u>http://www.learner.org/interae</u> <u>c/groups_interactive.html</u>

 Demonstrations can 	Modern Chemistry
by using static charge	WebResource: Molec
n against a wall or	Bonding Interactive Q
opositely charged ble tape are attracted	http://www.teachersdomain.c
h other but also to	sps07.sci.phys.matter.molec
tors and non-	Articles
h as foil strips or	https://www.ck12.org/c/c
	onic-bond/rwa/Give-Me-
	Smile/?referrer=concept
	Modern Chemistry Teache
<u>1S</u>	Resources
t understand that the	Performance Tasks
ila for ionic compounds	Students will be given sev
implest formula of the	covalent compound name
opposed to the	students will draw Lewis s
plecules that are each	these compounds. Stude
p of atoms.	use either molecule kits or
	and toothpicks or marshm
	build the molecule. Studer
	label the bonds as polar o
	and then use molecule str
	symmetry to classify the b
	either polar or nonpolar.

ard, Explanations, conceptions gth [3 days]	Essential Questions, Learning Outcomes, Phenomena	3-Dimensional Instructional Approach (SEPs and CCCs)	Vocabulary and Cui Materials
	Essential Questions	Science and Engineering Practice	Vocabulary
Aotion and Stability:	How does the kinetic-molecular	Developing and using models	Dipole-dipole forces, dipol
eractions	theory explain the properties of solids,		bonding, London dispersic
	liquids, and gases in terms of particle	Students can test the predictive	unshared electron pairs, ir
Understand that	energy and the forces between	abilities of their models in a real-world	dipole
forces created by the	particles?	setting and make comparisons of two	<u>Textbook</u>
ution of charges result		models of the same process or	Modern Chemistry Chap.
ees of attraction	Learning Outcomes	system.	Laboratory
ules. Compare and	Contrast the arrangement of particles	-	Activities/Investigations
ermolecular forces	genient er partieree		https://www.ck12.org/c/c
			Ch - Ile

ding, dipole-dipole ondon dispersion lifferent types of simple ly those following the predict and explain hemical and physical ose substances using hical representations.

esumes where f in 7.PS1. Students' o all three phases of hird grade, by fifth were investigating ; in matter. These ve not included a explain why states of endent on temperature Students should andard in conjunction S2.1 to explore ntermolecular in molecular and ionic d the behavior of ng to these differences.

าร

think of hydrogen eparate type of force. In fact, it is a ng dipole-dipole force. in solids, liquids, and gases.

Explain how the addition and removal of energy can cause a phase change.

Interpret a phase diagram

Phenomenon

Discuss and have the students explain the difference between the boiling point of water and a substance such as alcohol. Students could measure the boiling point of both alcohol and water. Have students then explain phenomenon like why it hurts to dive off of the diving board and land on your back or why you can pour water over the top of a cup and it will form a convex surface but alcohol will not. This should involve student analysis of molecular structure, shape and polarity to develop an understanding of attraction between molecules that lead to the properties of molecules.

Cross Cutting Concepts Stability and

Change

Students provide examples and explanations for sudden and gradual changes.

<u>Textbook</u>

Modern Chemistry Chap. 6 Sec 5

olar-molecules/rwa/The-Effect/?referrer=concept Modern Chemistry Teache Resources Simulations https://interactives.ck12 tions/chemistry/intermo forces/app/index.html?h 49a742e131936d1039b51 urce=ck12&artifactID=2§ errer=concept details&t ps%3A//www.ck12.org/c polar-molecules/%23sim Modern Chemistry Web Practice Quiz: http://www.pbs.org/wgbh/nov cal-bonds-quiz.html http://phet.colorado.edu/en/s ecule-polarity Modern Chemistry We Resource: Intermolecular Forces http://www.chem.arizona.edu /hbond.html Articles https://www.ck12.org/c/c olar-molecules/rwa/The-Effect/?referrer=concept Modern Chemistry Teache Resources **Performance Tasks**

Modern Chemistry Teache

Students will use the follow perform the simulation inv intermolecular forces. https://www.ck12.org/c/c

Shelby

Resources

	olar-molecules/rwa/The- Effect/?referrer=concept